علوم وتكنولوجيا

TSC tunes progenitor balance and upper-layer neuron generation in neocortex


  • Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Rakic, P. The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res. Rev. 55, 204–219 (2007).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Andrews, M. G., Subramanian, L., Salma, J. & Kriegstein, A. R. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat. Rev. Neurosci. 23, 711–724 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Akula, S. K., Exposito-Alonso, D. & Walsh, C. A. Shaping the brain: the emergence of cortical structure and folding. Dev. Cell 58, 2836–2849 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Molnár, Z. et al. New insights into the development of the human cerebral cortex. J. Anat. 235, 432–451 (2019).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Casingal, C. R., Descant, K. D., & Anton, E. S. Coordinating cerebral cortical construction and connectivity: unifying influence of radial progenitors. Neuron https://doi.org/10.1016/j.neuron.2022.01.034 (2022).

  • Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Pebworth, M. P., Ross, J., Andrews, M., Bhaduri, A. & Kriegstein, A. R. Human intermediate progenitor diversity during cortical development. Proc. Natl Acad. Sci. USA 118, e2019415118 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Ma, S. et al. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 377, eabo7257 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Stepien, B. K., Vaid, S. & Huttner, W. B. Length of the neurogenic period—a key determinant for the generation of upperlayer neurons during neocortex development and evolution. Front. Cell Dev. Biol. 9, 676911 (2021).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nakagawa, N. et al. Memo1-mediated tiling of radial glial cells facilitates cerebral cortical development. Neuron 103, 836–852 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Salussolia, C. L., Klonowska, K., Kwiatkowski, D. J. & Sahin, M. Genetic etiologies, diagnosis, and treatment of tuberous sclerosis complex. Annu. Rev. Genomics Hum. Genet. 20, 217–240 (2019).

    Article
    CAS
    PubMed

    Google Scholar

  • Dibble, C. C. et al. TBC1D7 is a third subunit of the TSC1–TSC2 complex upstream of mTORC1. Mol. Cell 47, 535–546 (2012).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Vanclooster, S. et al. The research landscape of tuberous sclerosis complex-associated neuropsychiatric disorders (TAND)—a comprehensive scoping review. J. Neurodevel. Disord. 14, 13 (2022).

    Article

    Google Scholar

  • Girodengo, M., Ultanir, S. K. & Bateman, J. M. Mechanistic target of rapamycin signaling in human nervous system development and disease. Front. Mol. Neurosci. 15, 1005631 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Feliciano, D. M., Su, T., Lopez, J., Platel, J. C. & Bordey, A. Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice. J. Clin. Invest. 121, 1596–1607 (2011).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Way, S. W. et al. Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum. Mol. Genet. 18, 1252–1265 (2009).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Magri, L. et al. Timing of mTOR activation affects tuberous sclerosis complex neuropathology in mouse models. Dis. Models Mech. 6, 1185–1197 (2013).

    CAS

    Google Scholar

  • Magri, L. et al. Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. Cell Stem Cell 9, 447–462 (2011).

    Article
    CAS
    PubMed

    Google Scholar

  • Carson, R. P., Van Nielen, D. L., Winzenburger, P. A. & Ess, K. C. Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin. Neurobiol. Dis. 45, 369–380 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Onda, H. et al. Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol. Cell. Neurosci. 21, 561–574 (2002).

    Article
    CAS
    PubMed

    Google Scholar

  • Ess, K. C. et al. Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia 46, 28–40 (2004).

    Article
    PubMed

    Google Scholar

  • Mietzsch, U., McKenna, J. 3rd, Reith, R. M., Way, S. W. & Gambello, M. J. Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants. J. Comp. Neurol. 521, 3817–3831 (2013).

    Article
    CAS
    PubMed

    Google Scholar

  • Goto, J. et al. Regulable neural progenitor-specific Tsc1 loss yields giant cells with organellar dysfunction in a model of tuberous sclerosis complex. Proc. Natl Acad. Sci. USA 108, E1070–E1079 (2011).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Man, A. et al. The genetics of tuberous sclerosis complex and related mTORopathies: current understanding and future directions. Genes 15, 332 (2024).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Winden, K. D., Ebrahimi-Fakhari, D. & Sahin, M. Abnormal mTOR activation in autism. Annu. Rev. Neurosci. 41, 1–23 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Mühlebner, A. et al. Specific pattern of maturation and differentiation in the formation of cortical tubers in tuberous sclerosis complex (TSC): evidence from layer-specific marker expression. J. Neurodevelop. Disord. 8, 9 (2016).

    Article

    Google Scholar

  • Catlett, T. S. et al. RHOA signaling defects result in impaired axon guidance in iPSC-derived neurons from patients with tuberous sclerosis complex. Nat. Commun. 12, 2589 (2021).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat. Commun. 8, 15816 (2017).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Meng, D., Frank, A. R. & Jewell, J. L. mTOR signaling in stem and progenitor cells. Development 145, dev152595 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Park, S. M. et al. Brain somatic mutations in mTOR disrupt neuronal ciliogenesis, leading to focal cortical dyslamination. Neuron 99, 83–97 (2018).

    Article
    CAS
    PubMed

    Google Scholar

  • Schrötter, S. et al. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep. 39, 110824 (2022).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Kim, M. et al. Brain gene co-expression networks link complement signaling with convergent synaptic pathology in schizophrenia. Nat. Neurosci. 24, 799–809 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Beattie, R. et al. Mosaic analysis with double markers reveals distinct sequential functions of Lgl1 in neural stem cells. Neuron 94, 517–533 (2017).

    Article
    CAS
    PubMed

    Google Scholar

  • Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article
    CAS
    PubMed

    Google Scholar

  • Loo, L. et al. Single-cell transcriptomic analysis of mouse neocortical development. Nat. Commun. 10, 134 (2019).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Li, M. et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615 (2018).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • SFARI Gene. Human Gene Module. SFARI Gene https://gene.sfari.org/database/human-gene/ (2025).

  • Andrews, M. G., Subramanian, L. & Kriegstein, A. R. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife 9, e58737 (2020).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Fietz, S. A. et al. Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc. Natl Acad. Sci. USA 109, 11836–11841 (2012).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Florio, M. et al. Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347, 1465–1471 (2015).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Polioudakis, D. et al. A single-cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron 103, 785–801 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhang, Y. et al. An rNA sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89, 37–53 (2016).

    Article
    CAS
    PubMed

    Google Scholar

  • Ferrari, K. J. et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol. Cell 53, 49–62 (2014).

    Article
    CAS
    PubMed

    Google Scholar

  • Riising, E. M. et al. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347–360 (2014).

    Article
    CAS
    PubMed

    Google Scholar

  • van Arensbergen, J. et al. Genome-wide mapping of autonomous promoter activity in human cells. Nat. Biotechnol. 35, 145–153 (2017).

    Article
    PubMed

    Google Scholar

  • Tie, F. et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136, 3131–3141 (2009).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Pasini, D. et al. Characterization of an anatgonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of the Polycomb group target genes. Nucleic Acid Res. 38, 4958–4969 (2010).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article
    ADS

    Google Scholar

  • Ziller, M. J. et al. Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 518, 355–359 (2015).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Albert, M. et al. Epigenome profiling and editing of neocortical progenitor cells during development. EMBO J. 36, 2642–2658 (2017).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Reilly, S. K. et al. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347, 1155–1160 (2015).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Won, H. et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527 (2016).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Armand, E. J., Li, J., Xie, F., Luo, C. & Mukamel, E. A. Single-cell sequencing of brain cell transcriptomes and epigenomes. Neuron 109, 11–26 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Mangan, R. J. et al. Adaptive sequence divergence forged new neurodevelopmental enhancers in humans. Cell 185, 4587–4603 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • de la Torre-Ubieta, L. et al. The dynamic landscape of open chromatin during human cortical neurogenesis. Cell 172, 289–295 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wang, L. et al Molecular and cellular dynamics of the developing human neocortex. Nature https://doi.org/10.1038/s41586-024-08351-7 (2025).

  • Liang, D. et al. Cell-type-specific effects of genetic variation on chromatin accessibility during human neuronal differentiation. Nat. Neurosci. 24, 941–953 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Stein, J. L. et al. A quantitative framework to evaluate modeling of cortical development by neural stem cells. Neuron 83, 69–86 (2014).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Namba, T. et al. Human-specific ARHGAP11B acts in mitochondria to expand neocortical progenitors by glutaminolysis. Neuron 105, 867–881 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Patowary, A. et al. Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms. Science 384, eadh7688 (2024).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Eichmüller, O. L. et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science 375, eabf5546 (2022).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Blair, J. D., Hockemeyer, D. & Bateup, H. S. Genetically engineered human cortical spheroid models of tuberous sclerosis. Nat. Med. 24, 1568–1578 (2018).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Li, T. L. et al. mTORC1 activation drives astrocyte reactivity in cortical tubers and brain organoid models of TSC. Preprint at bioRxiv https://doi.org/10.1101/2025.02.28.640914 (2025).

  • Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Chung, C. et al. Comprehensive multi-omic profiling of somatic mutations in malformations of cortical development. Nat. Genet. 55, 209–220 (2023).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Wamsley, B. et al. Molecular cascades and cell type-specific signatures in ASD revealed by single-cell genomics. Science 384, eadh2602 (2024).

    Article
    ADS
    PubMed

    Google Scholar

  • Martin, P. et al. TSC2 loss in neural progenitor cells suppresses translation of ASD/NDD-associated transcripts in an mTORC1- and MNK1/2-reversible fashion. Preprint at bioRxiv https://doi.org/10.1101/2024.06.04.597393 (2024).

  • Mills, J. D. et al. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci. Rep. 7, 8089 (2017).

    Article
    ADS
    PubMed
    PubMed Central

    Google Scholar

  • Iwata, R. et al. Mitochondria metabolism sets the species-specific tempo of neuronal development. Science 379, eabn4705 (2023).

    Article
    CAS
    PubMed

    Google Scholar

  • Diaz-Cuadros, M. et al. Metabolic regulation of species-specific developmental rates. Nature 613, 550–557 (2023).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • McLean, C. et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471, 216–219 (2011).

    Article
    ADS
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Benito-Kwiecinski, S. et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 184, 2084–2102 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Kwiatkowski, D. J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet. 11, 525–534 (2002).

    Article
    CAS
    PubMed

    Google Scholar

  • Hernandez, O., Way, S., McKenna, J. 3rd & Gambello, M. J. Generation of a conditional disruption of the Tsc2 gene. Genesis 45, 101–106 (2007).

    Article
    CAS
    PubMed

    Google Scholar

  • Guo, H. et al. Specificity and efficiency of Cre-mediated recombination in Emx1-Cre knock-in mice. Biochem. Biophys. Res. Commun. 273, 661–665 (2000).

    Article
    ADS
    CAS
    PubMed

    Google Scholar

  • Pimeisl, I. M. et al. Generation and characterization of a tamoxifen-inducible EomesCreER mouse line. Genesis 51, 725–733 (2013).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article
    CAS
    PubMed

    Google Scholar

  • Hippenmeyer, S. Dissection of gene function at clonal level using mosaic analysis with double markers. Front. Biol. 8, 557–568 (2013).

    Article
    CAS

    Google Scholar

  • Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 65 (2019).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Tiberi, S., Crowell, H. L., Samartsidis, P., Weber, L. M. & Robinson, M. D. distinct: a novel approach to differential distribution analyses. Ann. Appl. Stat. 17, 1681–1700 (2023).

    Article
    MathSciNet
    MATH

    Google Scholar

  • Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Konopka, G. et al. Modeling the functional genomics of autism using human neurons. Mol. Psychiatry 17, 202–214 (2012).

    Article
    CAS
    PubMed

    Google Scholar

  • Brien, A. O. & Bailey, T. L. GT-Scan: identifying unique genomic targets. Bioinformatics 30, 2673–2675 (2014).

    Article

    Google Scholar

  • Hansen, D. V., Rubenstein, J. L. & Kriegstein, A. R. Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70, 645–660 (2011).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Smith, J. R. et al. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev. Biol. 313, 107–117 (2008).

    Article
    CAS
    PubMed

    Google Scholar



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على: yalebnan.org

    تاريخ النشر: 2025-12-04 05:53:00

    الكاتب: ahmadsh

    تنويه من موقعنا

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    yalebnan.org
    بتاريخ: 2025-12-04 05:53:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقعنا والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة: قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    اظهر المزيد

    مقالات ذات صلة

    زر الذهاب إلى الأعلى